Uwe Bischoff

Bischoff Analysentechnik

Page 1 of 16

Maxum FAQ

21.
How do SNE and Syscon communicate?

22.
What happens at the start of a process cycle?

23.
How does the cycle clock work?

34.
What happens at the end of a process cycle?

35.
Explain Stream Sequence, Next Stream Control

45)
How do you test for the Next Stream?

46)
How do calibration and validation sequences differ from process sequences?

57)
How do the Autocal and Autovalidation programs work?

58)
Alarm Handling

69)
Reports

910)
Program execution

1011)
MaxBasic, what can it do?

1012)
MaxBasic, how do you write programs and test

1113)
MaxBasic, current problems

1114)
Maxum to HCI-H, where does info come from?

1115)
Maxum to HCI-H or Maxum Modbus how are results designated?

1216)
How do host controls work from HCI-H to Maxum?

1217)
How do host controls work from Maxum Modbus?

1218)
Control from DCS; how the DCS sends signals to Maxum to initiate calibraton or change to alternate process sequences

1219)
What can ODBC do?

1320)
What Maxum database attributes are not used?

1321)
Simulation, what can it be used for?

1422)
How do we use 3rd party analyzers with a Maxum NAU to transmit information to a DCS?

1523)
How can the Syscon’s cpu and memory be monitored?

1624)
How can I run a program on a remote Maxum or Optichrom?

1625)
Why do I need to save to flash before making a backup of the database?

1626)
How can an application be required to wait until temperature or pressure is reached?

1. How do SNE and Syscon communicate?

The SNE and Syscon communicate using TCP messages. TCP is a transfer protocol – it defines a means of reliable transfer of information via an agreed upon connection. The Syscon’s TCP server accepts a request for connection from the SNE and establishes a connection, over which messages may be exchanged. Both the SNE and Syscon have software that processes the messages. In addition to operational messages, there is a mutual heartbeat message that indicates to each one that the other is still there. Anytime this heartbeat is delayed or interfered with the Syscon tells the SNE to reset. A summary of messages:

Alarm transmit

SNE =>Syscon

Calendar Clock Request
SNE=>Syscon

Calendar Clock Reply

Syscon=>SNE

Configure Detector

Syscon=>SNE

Cycle End

SNE=>Syscon

Hardware Add

SNE=>Syscon

I/O Read

Syscon=>SNE

I/O Write

Syxcon(SNE

I/O Status

SNE=>Syscon

Method Control

Syscon=>SNE

Method Status

SNE=>Syscon

Method Write

Syscon(SNE

Real time chrom control

Syscon=>SNE

Real Time chrom write

SNE=>Syscon

Results complete

SNE=>Syscon

Schedule Program

SNE=>Syscon

Tftp load

SNE(Syscon

Unit id

SNE(Syscon

Virtual I/O add

Syscon=>SNE

2. What happens at the start of a process cycle?

The Syscon determines what stream and method to run by looking at the active sequence, figuring out which stream is flowing(the one with the F). The Syscon moves the status to CURR, moves the STEP to the next one to flow, waits for stream purge or temp/pressure initial setting. If the method is marked for download, the Syscon sends the method to the SNE using the MethodWrite message. If the method is not marked for download, it tells the SNE to run the method with the MethodControl message. It clears the error and warning attributes in the stream table and clears the intermediate results that reside in the ezchrom_result and chromatogram tables. The SNE is now in control, until it sends the ResultsComplete Message to the Syscon.

3. How does the cycle clock work?

The cycle clock is not kept by the Syscon. The Syscon receives MethodStatus messages every second that contain the current value of the cycle clock on the SNE. This means that depending on the load on the system, these message may not be updated on the MMI every second. No processing should be dependent on the apparent(on the Syscon) cycle clock being accurate.

4. What happens at the end of a process cycle?

As the SNE transfers results to the Syscon with the MethodWrite message – peak and group results and chroms, it stores them first in the chromatogram and ezchrom_result tables and then in the results table(cycle_runtime and buffered value). When the SNE has completed its processing, currently at the end of the cycle, it sends a ResultsComplete message. Now the Syscon is in control. It starts the next cycle and begins its end of cycle processing: It first clear errors, if autoclear has been designated, then, if there are no fault alarms for this cycle(curr_error in the stream table), does an automvr. If designated, it will also run the mvrpgm. If there is a fault alarm, neither of these will occur. Version 3.0 has an extra step to check to see if there is a MaxBasic program executing for the stream. If so, it causes a fault alarm that blocks the mvr from occurring. This step has been removed for Version 3.1. Log processing occurs next, if autolog has been designated. AutoTrt processing is next. Both log and trt will occur regardless of errors. After all this, the result table is told to do its end of cycle processing: Sets the AO from the saved_value, sets the DO to true and checks for limit processing. These actions are forced – regardless of whether the saved_value has changed.

5. Explain Stream Sequence, Next Stream Control

Each application has a set of sequences - by default, a process sequence and default calibration sequence. Sequences are more than stream sequences, designating stream, method, and calibration run type in a certain order. Sequences are defined in EZChrom and can’t be modified elsewhere. As the Maxum runs an application, it cycles through the “steps” in the active sequence. As it runs, each step will be indicated as F(lowing) or not, CURR(ent) and/or STEP. The step that is marked as flowing, indicates that the sample valve is on. The step that is marked CURR is the one that the SNE is currently processing. The step that is marked STEP indicates the next sample valve to be used(if the sequence is the active sequence). If the active sequence is changed, the STEP indicates the place the sequence will return to when it is next active, unless it is a validation or calibration sequence(which always start at the first). When a stream step occurs, the currently open stream valve is turned off, the stream valve of the STEP step is turned on, the F is moved to the STEP. If the sequence has been “interrupted” by the introduction of a ALWYS or ONCE, different actions occur, as expected. Manual intervention is also possible by doing repeated stream steps or by setting the STEP to be something different on the MMI. There are many possibilities for the manual operation of sequences. An example:

Normal sequence, beginning in hold:

1) Stream 1/Method 1 Step

2) Stream 2/Method 1

3) Stream 3/Method 1

4) Stream 4/Method 1

When application is put in run, stream 1 begins to flow:

1) Stream 1/Method 1 F Step

2) Stream 2/Method 1

3) Stream 3/Method 1

4) Stream 4/Method 1

Stream purge is complete, method is sent to SNE:

1) Stream 1/Method 1 F Curr

2) Stream 2/Method 1 Step

3) Stream 3/Method 1

4) Stream 4/Method 1

Stream step occurs and stream 2 begins:

1) Stream 1/Method 1 Curr

2) Stream 2/Method 1
F Step

3) Stream 3/Method 1

4) Stream 4/Method 1

SNE completes stream 1 analysis, stream 2 begins

1) Stream 1/Method 1

2) Stream 2/Method 1 F Curr

3) Stream 3/Method 1 Step

4) Stream 4/Method 1

Manual intervention can move the Step, Force a stream to run Alwy or Once, or do a stream step. When the active sequence changes, the Step is left to remember where to return when active again. Calibration and Validation sequence always begin on the first.

5) How do you test for the Next Stream?

This is not easy to do. Check in the application table for the active sequence. Read the sequence_entry table for the active sequence. Check first for the interrupt > 0, which tells whether an Alwy or Once has been introduced. Then check for a state value > 1. State values are 1=Curr, 2=Step, 3=C,S. There are probably cases where a manual intervention of extra stream steps or forcing a stream will cause this not to be valid.

6) How do calibration and validation sequences differ from process sequences?

Calibration sequences and validation sequences are different in that when they are set active, they always start with the first step. At the end of the sequence, a validation and autocalibration always returns to the prior active sequence. A manual calibration remains in the calibration sequence until told to do something else. During calibration, additional calibration information is sent from the SNE and stored in the calibration tables – calibration_level and calibration_replicate. When calibration is accepted, either manually or automatically, response factors are changed.

7) How do the Autocal and Autovalidation programs work?

Autocalibration is a method for running a calibration sequence and automatically accepting response factors. When an application is placed in autocalibration from the MMI, from a pgmfunction in the program table, or from an external calibrate command it switches the active sequence to the default calibration sequence(application table autocal_seq). It always begins on the first step in the sequence. (Note that for version 3.1, a stream step also occurs- the 3.1 patch removes this) During calibration, as with manual cal, the SNE sends calibration information at the end of cycle. New response factors are stored in the calibration_level table, but are not finalized until the end of the auto calibration sequence. At that time, peak margins are checked and response factors are accepted – all or none. The previous sequence is then automatically resumed.

Autovalidation is a method for running a validation sequence. A sequence is marked as a verification/validation sequence in EZChrom. There should be only one validation sequence. This sequence is different in operation from a normal sequence in two ways: It always begins on the first step and it always resumes the last sequence automatically. (Note that for version 3.1, a stream step automatically occurs, the 3.1 patch removes the stream step).

8) Alarm Handling

Alarms are posted to the alarm_log table using an alarm code and a set of parameters. Static parameters are appcontext, streamcontext, cycle_time, first post time, and latest post time. There are also one or two variable parameters param3 and param4. Param 5-param9 are not used. The alarm text comes from a different table that is loaded from the language files in System Manager. These could be changed at a customer site and reloaded, as needed. The language of the alarm text is chosen at display time only, by System manager or the MMI. If an alarm is posted more that once with the same parameters, it will only appear once, with a count of the number of times the alarm has occurred, alarmcount.

The Maxum Database has many built-in alarms as seen in the System Manager\Upgrade 3.x\Language\alarm.001 file. The Maxum may have default handling associated with certain alarms, but it is also possible to add handling in the form of setting a DO, running a program, ignoring the alarm, or changing the severity of an alarm. These are all done through the alarmhandler table. Alarm handling is done on an application basis, so that in a Maxum with multiple applications, it will be necessary to define special handling for each application. To disable(ignore) an alarm, add a record to the table for the application/alarm with the enable attribute set to false or null. To increase or decrease the severity of an alarm, redefine the text with ! (fault), ? (warning), + (note), or – (no alarm) and set enable to true. To set a DO or run a program, use the DO reference and DO setting or Programid. These actions occur only when the alarm is enabled. Custom alarms can be created by using alarms in the 900-996 range. These alarms can be activated from limits or from MaxBasic. An Excerpt from the MaxBasic document:

Beginning with version 3.1, posting alarms will be made easier. Example:

Sub main()

Dim SQL As String

Dim printline As String

 Dim n As Long

 ' This is an example program showing how to post alarms from Maxbasic for release 3.1

 ' It uses a utility message table called modbus_msg_buffer to process the alarm

 ' It will not interfere with modbus processing on the analyzer

 ' the id is always zero

 ' the type attribute tells it the action to perform 26 = post alarm

 ' the anlz attribute is the alarm_code

 ' application is the appcontext

 ' stream is the streamcontext

 ' value is the param3

 ' use these generic alarm_codes)997(+),998(?),999(!) or post a system alarm

 ' the SQL string can be built with any information, including any of the input arguments

 SQL = "insert into modbus_msg_buffer(id,anlz,application,stream,value,type) values"

 SQL= SQL + "(0,997,1,1,'This is a note alarm',26)"

 n = db.ExecuteSQL(SQL)

 SQL = "insert into modbus_msg_buffer(id,anlz,application,stream,value,type) values"

 SQL= SQL + "(0,998,2,2,'This is a warning alarm',26)"

 n = db.ExecuteSQL(SQL)

 SQL = "insert into modbus_msg_buffer(id,anlz,application,stream,value,type) values"

 SQL= SQL + "(0,999,3,3,'This is a fault alarm',26)"

 n = db.ExecuteSQL(SQL)

End Sub

 For testing, it is possible to generate alarms using the MMI(Menu=>0=>Alarm Generator).

9) Reports

The reports that can be automatically generated from the Maxum are

a. Result Logs

The Maxum can generate two types of result log to ADH printers and one type to TCP(or serial)printers. These are generated when the autolog is used or the lognow from the stream_method table. By designating which results are to print and what order in the logval attribute of the Result, you can print a standard type report. These reports also use the decimal_places attribute of the result.

The type of report is designated in the setup for the printer.

Example:

RESULT LOG ANLZ:142 09-MAY-2000 16:16:14

APPLICATION: Six TCDs STREAM: Stream 1 METHOD: Synthetic

 gL1a gL1b gL1c gU1a gU1b

 6.1222 16.0657 14.5377 10.2064 15.5602

 gU1c gL2a

 14.3700 7.5645

The ADH export report generates a comma separated list that is suitable to be captured and used by MS Excel. (Sorry, no example available). Results may be printed to multiple printers, indicated with the results_def attribute of the printer table.

b. Alarms

Alarms are sent to both ADH and TCP printers as:

ALARM FOR ANLZ:142 17-MAY-2000 08:44:48

 Application: Stream: Alarm Code: 999

 ! Fake Alarm

Alarms may be printed to multiple printers, indicated by the Alarms_def attribute in the printer table.

c. Calibration Logs

Calibration Reports are of two types: cycle and final.

Cycle Reports are generated every cycle and require that the autolog be set:

CALIBRATION LOG ANLZ:142 17-MAY-2000 09:13:54

APPLICATION: Six TCDs METHOD: MetTest DETECTOR: TCD U3

COMPONENT OLD NEW % CHG MEASURED STANDARD MARGIN

NAME FACTOR FACTOR CONC CONC

C1-U3 127479 127186 -0.23 1 1 0

C2-U3 191017.6 187837.7 -1.66 9.83 10
 0

 The final report will be generated at the end of autocal or when calibration is manually accepted. In the case of autocal, it will show whether any margins have been exceeded :

CALIBRATION LOG ANLZ:142 17-MAY-2000 09:18:06

APPLICATION: Six TCDs METHOD: MetTest DETECTOR: TCD U3

COMPONENT OLD NEW % CHG MEASURED STANDARD MARGIN

NAME FACTOR FACTOR CONC CONC

C1-U3 127479 131574 3.21 1.03 1 0

C2-U3 191017.6 195338.7 2.26 10.23 10 0

Calibration Accepted

Leave autolog off, if you want only the final report. In order to generate either calibration report, calibration_def must be indicated in the printer table . Calibration reports are limited to a single printer.

d. Parameter Reports

Parameter table reports were added in 3.1. It allows you to print parameters for a stream in a semi-customizable fashion. Here is an excerpt from the Getting Started Document:

To print a report from the parameter table, which can store large quantities of data generated from MaxBasic programs, do the following. Choose parameter streamcontexts to contain all the data to be printed together. Designate up to two header lines for the report. Create a print flag to control printing. An example parameter table:

 [image: image1.png]appconiext| streamcontext|parameter_id parameter_name| value | gid | qiype
100 a1 i header] Header | NULL NULL
100 ai 5) header2 Header 2 NULL NULL
100 ai 3 it flag. 0 NULL NULL
100 ai Pasameter] 123 NULL NULL
100 ai Parameter2 456 NULL NULL
100 4 Parameter3 789 NULL NULL

All of these parameters have the same appcontext, streamcontext. Parameter id –1 is used for the first heading, parameter –2 is the second heading, and parameter –3 is the print flag. A print to a properly set up printer will occur when the print flag value is changed to 1. In this case, the report would look like:

DATA LOG ANLZ:141 10-FEB-2000 15:48:03

Header 1

Header 2

 Parameter 1 1.23

 Parameter 2 4.56

 Parameter 3 7.89
e. MaxBasic Reports

Starting with Version 3.100, Custom reports can be generated from MaxBasic. This allows you to print virtually anything. Only tabs and newline formatting is available, but you have MaxBasic’s format$() function to format the data. Here is a program example, using specially written MaxPrint and EndPrint routines(Available from Customer Service).

Sub main()

Call MaxPrint(1,”This is a test report^n^n”

Call MaxPrint(1,”Result1^tResult2^tResult3^tResult4^n”)

Call MaxPrint(1,”1.11^t2.22^t3.33^t4.44^n”)

Call EndPrint(1)

End Sub

The report looks like:

This is a test report

Result1 Result2 Result3 Result4

1.11 2.22 3.33 4.44

f. ODBC Reports

Starting with Version 3.100, ODBC can be used to pull database information into MS Access, MS Excel, Visual Basic, and any other 3rd party software that can use ODBC(Crystal Reports…). With ODBC, the customer can write their own reports and statistical analyses. See the ODBC documentation that was delivered with 3.1. An example extract application was also delivered with 3.1, although it requires the Visual Basic library on the workstation. Currently in the works is a Visual Basic Print Utility that uses ODBC that should give nicely formatted reports.

10) Program execution

Programs can be set to run:

a. By Cycle event – use EZChrom to add a cycle event to run a program. Runs with stream context.

b. At a frequency by adding a program_schedule entry. When the program is enabled it begins to run at the next time that frequency is attained. I.E., a program that is set to run every 6 minutes, which is enabled at 10:02, will run at 10:08, 10:14, 10:20, etc. Multiple schedules can be entered for a program, but they are all used simultaneously. No stream context.

c. At a time of day by adding a program_schedule entry. The time can be set to a (24 hr.) setting like 10, 10:00, or 10.00. The day can be set to 201-231 for day of month or 1-127 for day of week, 1 being Saturday, 2 being Friday, 5 being Th, Sat, 127being every day. No stream context.

d. By Limit – Attach a limit and alarmhandler to any I/O, Result, ExtResult. No stream context.

e. At end of cycle – add mvrpgm entry to stream_method table. Runs with stream context.

f. From another program – enable a frequency program from MaxBasic. No Stream context.

g. From Maxum Modbus (Version 3.1x) – set a modbus address from a DCS. Runs with stream context.

h. From an ADH HAE message – not sure all the ways this can be done. Runs with stream context.

i. Version 3.1 Patch – From an entry in the analyzer table in hae_app, hae_strm, hae_evt. This causes a program to run on a remote Maxum or ADH.

Comments about the stream context are important to know because not only is the program’s streamcontext checked, but MaxBasic may or may not have the stream available as an automatic argument. When manually testing a program that uses a stream argument, you will need to place a stream id in the runstream attribute of the Program table.

While the program is running, an entry is made in the program_execution table. All input arguments from the parameter table are evaluated at the time the program is set to execute(iargs, rargs). The Basic interpreter can have five instances running at a time. They run as separate tasks within the Syscon, and theoretically should not impact the performance of the Maxum. An NAU has the capability to run programs locally, without any applications.

11) MaxBasic, what can it do?

MaxBasic can do almost anything, limited by the knowledge of the programmer. It has access to every database table and certain built-in functions of the database, but knowledge of the database is required. It can do anything that System manager or the MMI can do, except provide visual forms and screens. It can destroy the database by deleting data, tables, etc. It can post alarms and generate simple custom reports. Most of the non-visual commands and functions of Visual Basic 3.0 are supported. It cannot read or write EZChrom binary data. MaxBasic programs cannot run continuously

12) MaxBasic, how do you write programs and test

MaxBasic programs are written in a special program editor. This program editor is not available to all users, because it is not always easy to use, nor is it reliable. The programs can be tested within the program editor and on a Syscon. Testing must be done both places, because the Basic interpreter is potentially different. The normal development cycle is:

a. Write Basic program in the MaxBasic development environment

b. Set up input arguments with fake values, application, and stream

c. Run program. Look at outputs. Note that if .edit, .update methods are used, the database will not be modified. If ExecuteSQL is used, changes will occur. Compile .exe.

d. Download program to a testing Syscon either by using MaxBasic or by adding the program binaries in System Manager. The scode is the .bas file, the pcode is the .exe file. Set up Syscon as it will be at the customer site, with applications, streams, results, etc using an .amd or text load file.

e. Run the program by manually executing, or by frequency. A program running on a Syscon should show all changes, regardless of using .edit, .update or ExecuteSql. A manually run program that requires a stream will need to have the runstream attribute set in the program table.

f. Check program outputs.

g. Load program on real analyzer. Run and check outputs.

13) MaxBasic, current problems

a. Version 3.0 – frequency scheduling was very coarse. A program that was set to run every 20 seconds would actually run in 20-40 seconds.

b. The development environment for MaxBasic is unreliable.

c. Database fields that contain null cannot be changed with the .edit, .update methods.

d. The interpreter is very picky about the datatypes of variable that are used to update the database

e. Sql statements are not checked for validity and can easily destroy the database. These errors could be as simple as spelling an attribute name wrong.

14) Maxum to HCI-H, where does info come from?

Besides results from the result table, the HCI-H is sent:

Analyzer # - the lid attribute of the system_control table

Number of streams – count of the # of non-calibrate streams in all applications(checks calibrate attribute in stream table)

of peaks – for streams 1-32, checks the result table to see if any trtval for that stream is designated. Uses the maximum # of peaks for a stream.

Stream # - stream whose results are transmitting

Selected Stream – always zero

Stream maskA – checks stream_method table, sets bits for enable streams between 17 and 32, ignores any above 32

Stream maskB – checks stream_method table, sets bits for enabled stream from 1 to 16

Report Timer – longest cycle_time of all enabled methods on analyzer

Scaled Cycle Time – longest cycle time*(fracfs/9999.0)

Scaled analyzer Status – status(fracfs/999.0)

Fractional Full Scale – scale from host table

Next Stream – always zero
Analyzer status –

50 = application in hold, not enabled, out of service

6ss = manual cal

7ss = autocal

100= stream is in fault

1000 = normal

15) Maxum to HCI-H or Maxum Modbus how are results designated?

Results are marked for transmission using the trtval attribute of the result table. Euhi is set in the result table, also. The trtval numbers must be sequential, starting at 1. They don’t need to match the result_index. To transmit at the end of cycle, use the autotrt attribute of the stream_method table. Results will be sent to all hosts as designated in the host table.

16) How do host controls work from HCI-H to Maxum?

The HCI-H converts Modbus host requests into ADH FUNCT message calls to enable/disable streams run/hold/cal, or force stream. The DCS must communicate values to certain specific registers in order for the HCI-H to interpret its requests. Since the ADH commands do not include an application, a Maxum must supply the applcation by using the default ADH application in the system_control table.

17) How do host controls work from Maxum Modbus?

The Maxum table modbus_addmap, along with the modbus driver software, take the place of the HCI-H in the Maxum. The table also processes requests from the DCS and sends messages to itself, remote Maxums, or Advance Optichroms. Instead of relying on a fixed mapping of registers, it instead depends on information in the map to tell it what to do and where to send the message. Messages are sent using ADH or inserts into a local or remote Maxum table called Modbus_msg_buffer. The messages are processed and deleted from this table immediately.

18) Control from DCS; how the DCS sends signals to Maxum to initiate calibraton or change to alternate process sequences
For the HCI-H, specific bits are set that cause an ADH FUNCT command to calibrate for a certain stream. In the Maxum, this calibrate message is applied to the default ADH application, as indicated in the system_control table.

For the Maxum Modbus, when a CALIBRATE address is set for an application, a message is sent to the designated analyzer/application to start calibration
In the Maxum, this causes the default calibration sequence (autocal_app, autocal_seq) to become active. Autocal or manual cal run based on the autocal flag in the application table. The Maxum ignores the stream that may be part of the message.

In Version 3.10 Patch there will be the ability, from Maxum Modbus only, to run a MaxBasic program. This is the only way to change the process sequence from a DCS.

19) What can ODBC do?

Here is an excerpt from the ODBC documentation furnished in the 3.1 release:

ODBC means Open Database Connectivity. It allows Windows applications to access a variety of different databases using a common interface. In order to use ODBC, the database vendor, Polyhedra in our case, must provide an ODBC driver that is then installed and configured on the local workstation.

Examples using MS Access, MS Excel, and Visual Basic are furnished in the Advance System Manager\Upgrade 3.10\ODBC directories. The ODBC driver is limited in many ways. Of primary concern is the lack of dynamic query and non-support of certain commands. However, as a way to access database tables to extract information, it will be very useful. We are just beginning to become aware of what it can’t and can do. The most important feature to appreciate is the availability of data to any number of customer written applications or 3rd party software. ODBC can be thought of as a protocol for communicating SQL statements to the Maxum, in a similar fashion to MaxBasic. Most ODBC applications will mask the SQL from the user, though.

20) What Maxum database attributes are not used?

See the updated Tables 3.1 document.

21) Simulation, what can it be used for?

Simulation is the mechanism that the SNE uses to simulate attached hardware. Using simulation allows the developer to set up a Maxum with an SNE that reports hardware, processes cycles, and sends results and realtime chroms. All this is done without any attached hardware.

The SNE is told to run simulation by the Syscon when it exchanges Unit Id messages. The value that the Syscon sends comes from the SNE_simulation attribute in the system_control table. Once the attribute has been set the SNE must be reset. The format of this 32-bit integer tells the SNE what hardware to report.

Simulation mode: (SysCon to SNE)

|3322|2222|2222|1111|1111|1100|0000|0000| Bit #

|1098|7654|3210|9876|5432|1098|7654|3210|

|Max |Reserved |TCD |EPC |PECM|FID |SVCM| R means reserved

|000R| |4321|4321|RRR1|4321|R321| (don’t use)

+----+--------------+----+----+----+----+

|Adv+|Slot|Slot|Slot|Slot|Slot|Slot|Slot|

|001A| 8 | 7 | 6 | 5 | 4 | 3 | 2 |

R = Reserved

A = Advance Adapter

Slot ID’s

	ID
	Advancd Adapter Backplane Card

	1
	AO

	2
	DO

	3
	FID

	4
	DI

	5
	Detector Interface Board

	6
	AI

	7
	TC3

	8
	TC4

You’ll need a calculator to figure out the number needed. Examples:

7 = 111 causes 3 SVCMs to be reported

356641 = 0101 0111 0001 0010 0001 causes 1 SVCM, 1 FID+TC, 1 PECM, 3 EPC, 2 TCD+TC

947086369 = 0011 1000 0111 0011 0110 0100 0010 0001causes Advance+ with Advance Adapter, Slot2(AO), Slot3(DO), Slot4(DI),Slot5(AI), Slot6(FID), Slot7(TC3), Slot8(TC4)

Once the hardware is simulated, applications, detectors, methods, sequences, streams, etc can be entered into the db. This will allow running of a cycle and then receipt of useless data. There is also a way to export a chromatogram from EZChrom that will be sent to the SNE and returned to the Syscon with results. In EZChrom, Select the Options tab under Analyzer Connection. Use Enable Special Chromatogram Import/Export. This will then allow export of a chromatogram for simulation.

22) How do we use 3rd party analyzers with a Maxum NAU to transmit information to a DCS?

Maxum to HCIH

Use a MaxBasic program that runs at the cycle length frequency to store AI values and all other results needed by the HCI-H into the result table. Transmit these results using the free format(type 5). This will work similar to the Optichrom.

Maxum to Maxum Modbus

Version 3.1(prior to patch): Store AI values in the result table and transmit using a frequency scheduled MaxBasic program. Additional items that need to be set prior to transmission:

Application mode to 1 for running, 0 for hold, inservice, enabled

Streamstate of 1 in the stream to be next

Sequence entries enabled/disabled as desired

Alarm in curr_error of stream

Interrupt of 1 in any stream used for dedicated

Cycle_length of method set to cycle length

Use type 6 for host

Version 3.1(after patch): Store AI values in result table. Set up additional results with these specific result names:

Analyzerstatus – set to status as in HCI-H (required)

Currentstream – set saved_value to the next stream

Standby - set to 1 for running, 0 for hold

Alarmstream
- set for stream alarm

Alarmanlz – set to anlz alarm

Alarmapp – set ot application alarm

Dedicatedstream – set to dedicated stream

Cyclelength – set to cycle length

Skipstream – set saved value to stream that is enabled(positive) or disabled(negative)

Calibrate – set to 1 if in calibration

Do NOT mark these for transmit, only mark the result’s trtvals.

Use type 7 for the host. This is a new free format used for Maxum Modbus, which allows you to be free of entries in the actual tables. Example:

[image: image2.png]|1&&2
Jieez
Jieez
Jieez
Jieez
Jieez
Jieez
Jieez
Jieez
Jieez
Jieez
Jieez
Jieez
Jieez
Jieez
iee:

 analyzerstatus NULL NULL NULL
cumentstream NULL NULL NULL

standby

|NULL NULL NULL

slamstrean NULL NULL NULL

tesult]

tesult2

ddamapp
dlarmantz

NULL 1 NULL
NULL2 NULL
|NULL NULL NULL
NULL NULL NULL

ensblestream NULL NULL NULL

skipstrean
skdpstrean
skdipstrean
skdpstrean
skdipstrean
skdpstrean
skipsirsam

NULL NULL NULL
|NULL NULL NULL
NULL NULL NULL
|NULL NULL NULL
NULL NULL NULL
|NULL NULL NULL
WULL NULL HULL

NOLL

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NOLL

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

1000.000000
anooon
0000000
362000000
0234000
5678000
562000000
444000000
1000000
1000000
2000000
3000000
4000000
5000000
6000000

7 000000

This will transmit 2 results, along with supporting information to the host.

23) How can the Syscon’s cpu and memory be monitored?

Three commands are available to monitor the Syscon. These are used in Hyperterminal attached to the debug port or telnet.

pSH+> st
pNA: buffer size MB BLK
0
32
 64
128
512
1024
2048

pNA: no blocks
932
128
128
 228
320
64
32
 32

pNA: free
886
128
128
 228
274
64
32
 32

pNA: max used 131
 64
 17
 8
 98
 3
 2
 9

pNA: Times t-wait
0
0

pNA: Drops
0
0
0
 0
 0
 0
 0
 0

I/F MTU BytesIn BytesOut InUcast OutUcast InNUcast OutNucast InDisc OutDisc InErrs OutErrs

 1 1500 45490188 3044099 2949 4847 438711 37986 7928 0 1730 772

2 1500 94248648 18947676 1052760 312548 1 1 93 0 0 0

RN#0 free Largest unit_size total_units

 7692544 7681280 256 32453

Heap used high free largest fragments
mallocs
frees
diff

 10276208 10400704 13079408 12969696 18
 9672257
9670082
 2175

idle time = 56.2%, average = 55.3%
24) How can I run a program on a remote Maxum or Optichrom?

For Version 3.1(Patch) there are 3 fields in the analyzer table that allow you to do this. These are only accessible from MaxBasic at this time. By setting hae_app to 100, hae_stm to 3, and hae_evt to 30, in the entry where anlz_id = 141, I will cause event 30 for application 100, stream 3 to run on analyzer 141. The only caution is that analyzer 141 must be in the analyzer table.

25) Why do I need to save to flash before making a backup of the database?

When you backup the database and make an .amd file, it comes from the copy of the database that is in flash. On the other hand, when you make a database unload to a text file, it comes out of warm memory, not needing a save to flash.

26) How can an application be required to wait until temperature or pressure is reached?

Causing the application to pause and keep the cycle from beginning is controlled by a temperature or pressure program entered into EZChrom. This became available in Maxum 3.0 and is independent of the temperature controller version. The app_tempctl and app_pressctl tables contain attributes equilibrate, maxwait, and maxdelta. Equilibrate must be true(false is default), maxwait indicates the number of seconds that the application will wait until going into hold and issuing an alarm. Maxdelta gives the closeness in degrees/pressure units that the temperature/pressure needs to be before the application is released to run. After equilibrate is set to true, go to EZChrom and reconfigure. Add a temperature/pressure program entry for wait(the first step) with a setpoint. When the application is in the waiting state, it will appear as WAIT on the MMI.

